. 4
BASTA!

NET, WINDOWS, JRVASCRIPT

 \
N

(N

Rainer Stropek | timecockpit

C#-Performancetuning

Your Host

Rainer Stropek

Developer, Entrepreneur
Azure MVE MS Regional Director

Contact

software architects gmbh
rainer@timecockpit.com
Twitter: @rstropek

©IBASTA!

mailto:rainer@timecockpit.com

Agenda (German)

Der Code ist fertig, die Kunden beschweren sich tber schlechte Performance. Was nun? In dieser zweiteiligen Session zeigt
Rainer Stropek Wege aus solchen Krisen. Im ersten Teil erarbeiten wir die Grundlagen.

Was beeinflusst die Performance von .NET-Anwendungen?

Welche Mythen gibt es, die man getrost vergessen kann?

Warum beeinflussen JIT und Garbage Collector die Performance so stark?
Wie bereitet man Performanceprofiling richtig vor?

Welche grundlegenden Techniken gibt es daftr?

Solche und ahnliche Fragen sind Thema der Session.

Im zweiten Teil gehts ins Detail. Rainer zeigt anhand praktischer Beispiele, wie man Tools in und um Visual Studio
verwendet, um Performancekillern auf die Spur zu kommen. Sie lernen unter anderem die Profiling-Tools von Visual Studio
und das Microsoft-Werkzeug PerfView kennen. Exemplarisch wird Rainer in der Session auch Unterschiede zu
kommerziellen Profiling-Werkzeugen demonstrieren.

©IBASTA!

Why Optimizing? Examples ...

Customer satisfaction

Customers report performance problems
Reduce churn rate
Tip: Ask you users if they are leaving because of poor performance

Raise conversion rate
Consider the first impression potential users have from your software
Tip: Ask your users why they are not buying

Reduce TCO of your application

Performance problems waste your user’s time = money

Reduce TCO for your customers by lowering system requirements
Cloud environment is too expensive

©IBASTA!

<IBASTA!

Optimization Anti-Patterns

Add optimizations during initial development

Write obvious (not naive) code first 2 measure = optimize if necessary
Perf problems will always be where you don't expect them

Optimize code without measuring

Without measuring, optimized code is often slower
Make sure to know if your optimization brought you closer to your goals

Optimize for non-representative environments
Specify problematic environments as accurate as possible

Test your application on systems similar to your customers’ environments
Hardware, software, test data (consider data security)

©IBASTA!

Optimization Anti-Patterns

Optimization projects without concrete goals

Add perf goals (quantifiable) in requirements
You could spend endless time optimizing your applications
Optimize to solve concrete problems (e.g. for memory, for throughput, for response time)

Soft problems or goals

Strive for quantifiable perf metrics in problem statements and goals
Objective perf problems instead of subjective stories

Optimize without a performance baseline

Always know your performance baseline and compare against it
Reproducible test scenarios are important

©IBASTA!

Optimization Anti-Patterns

Optimize without profound knowledge about your platform
Know your runtime, platform, hardware, and tools

Optimize the wrong places

E.g. optimize C# code when you have a DB-related problem
Spend enough time on root-cause analysis for your perf problems

Ship debug builds

Release builds are much faster than debug builds

©IBASTA!

Optimization Anti-Patterns

Optimize everything
Focus on performance-critical aspects of your application instead
Pareto principle (80/20)

Architect without performance in mind

Avoid architecture with inherent performance problems
If necessary, consider prototyping in early project stages

Confuse performance and user experience
Async programming might not be faster but delivers better user experience

©IBASTA!

http://en.wikipedia.org/wiki/Pareto_principle

<IBASTA!

Good Optimization Projects

1. Plan for it

Put it on your backlog
Get (time) budget for it (time-boxing); consider a business case for your optimization project
Make yourself familiar with corresponding tools

2. Prepare a defined, reproducible test scenario

Hardware, software, network
Test data (e.g. database)
Application scenarios (automate if possible)

3. Measure performance baseline
E.g. CPU%, memory footprint, throughput, response time

©IBASTA!

http://en.wikipedia.org/wiki/Timeboxing

Good Optimization Projects

4. Define performance goals

Must be measurable
Involve stakeholders (e.g. product owners, customers, partners, etc.)

5. Optimize — Measure — Analyze Cycle

Don't change too many things at the same time

Measure after optimizing

Compare against baseline; if necessary, reset your baseline
Check if you have reached performance goals/time-box

6. Ask for feedback in real-world environments
E.g. friendly customers, testing team

©IBASTA!

Good Optimization Projects

7. Document and present your work

Architecture, code, measurement results
Potentially change your system requirements, guidelines for admins, etc.
Share best/worst practices with your peers

8. Ship your results

Remember: Ship release builds
Continuous deployment/short release cycles let customers benefit from perf optimizations

Consider hotfixes

©IBASTA!

Use the Cloua

Easy to build different execution environments

Number of processors, RAM, different operating systems, etc.
Performance of database clusters
Don't wait for admins to setup/deliver test machines/VMs

Design for scale-out and micro-services

Easier to add/remove VMs/containers than scaling up/down
Use micro-services and use e.g. Azure Websites or Docker to map to server farms

Extremely cost efficient

You only pay for the time your perf tests last
You can use your partner benefits, BizSpark benefits, etc.

©IBASTA!

Use the Cloua

Less data security issues if you use artificial test data

Ability to run large-scale load tests
Gather perf data during long-running, large-scale load tests

SaaS enables you to optimize for a concrete environment
Economy of scale

©IBASTA!

<IBASTA!

Performance influencers

Performance of storage system
Database, file system, etc.

Performance of services used
E.g. external web services

Network characteristics

How chatty is your application?

Latency, throughput, bandwidth

Especially important in multi-tier applications

©IBASTA!

http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput

Performance influencers

Efficiency of your algorithms

Core algorithms
Parallel vs. sequential

Platform characteristics

JIT compiler
Garbage collector

Hardware
Number of cores, 64 vs. 32 bits, RAM, SSDs, etc.

©IBASTA!

<IBASTA!

INnfluencers

Network connection to the database

Latency, throughput
Do you really need all the data you read from the database (e.g. unnecessary columns)?

Generation of execution plan

Statement parsing, compilation of execution plan
Bound to CPU-power of database server
Can't you simplify your query to speed up parse and compile time?

Query execution

Complexity of query, index optimization, etc.
You might need a database expert/admin to tune your SQL statements

©IBASTA!

INnfluencers

Process DB results
Turn DB results into .NET objects (O/R mappers)

DB access characteristics

Many small vs. few large statements

Lazy loading
DB latency influences DB access strategy

©IBASTA!

Finding problematic queries

SQL Server Profiler

Create and manage traces, replay trace results
Will pre deprecated

SQL Server Extended Events

Collect information to troubleshoot or identify performance problems

Dynamic Management Views (DMV)

sys.dm exec guery stats
sys.dm exec cached plans
Monitoring Azure SQL Database Using DMVs

©IBASTA!

https://msdn.microsoft.com/de-de/library/ms181091.aspx
https://msdn.microsoft.com/en-us/library/bb630282.aspx
https://msdn.microsoft.com/en-us/library/ms189741.aspx
https://msdn.microsoft.com/en-us/library/ms187404.aspx
https://msdn.microsoft.com/en-us/library/azure/ff394114.aspx

SELECT TOP 10 query stats.query hash AS "Query Hash",

SUM(query_stats.execution_count) AS "Execution Count", DMV
MAX(query stats.total worker time) AS "Max CPU Time", S
MIN(query_stats.statement_text) AS "Statement Text" Find long running queries in Azure
FROM

(SELECT QS.*, SUBSTRING(ST.text, (QS.statement_start offset/2) + 1,
((CASE statement end offset WHEN -1
THEN DATALENGTH(st.text)
ELSE QS.statement _end offset END
- QS.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS QS
CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST)
as query_stats
GROUP BY query stats.query hash
ORDER BY 3 DESC;
GO

See also https://msdn.microsoft.com/en-
us/library/azure/ff394114.aspx

©IBASTA!

https://msdn.microsoft.com/en-us/library/azure/ff394114.aspx

Finding problematic queries

TODO: IntelliTrace
TODO: RedGate SQL

©IBASTA!

Query Options

Specify the advanced execution settings.

Client Statistics

Query analysis

[]SET NOCOUNT SET ARITHABORT
[C]SET NOEXEC [J5ET SHOWPLAN_TEXT
[C]SET PARSEONLY [C]SET STATISTICS TIME

SET CONCAT_MULL_YIELDS_NULL
SET TRANSACTION ISOLATION LEVEL: ™
SET DEADLOCK_PRIORITY:

SET LOCK TIMEQUT: -

SET QUERY_GOVERNOR_COST_LmiT: |0
Suppress provider message headers
[] Disconnect after the query executes

Momal

[]SET STATISTICS 10
IREADCOMMITTED v

L

~| miliseconds

SELECT * FROM Sales.SalesOrderDetail s +
INNER JOIN Production.Product p ON s.ProductID = p.ProductID :
WHERE ListPrice > 3000

Cani

133% -

=
(& Results | (3 Messages. | 3
SQL Server parse and compile time:
CPU time = @ ms, elapsed time = 8 ms.

(3936 row(s) affected)

SQL Server Execution Times:
CPU time = 46 ms, elapsed time =
© SQL Server parse and compile time:
CPU time = @ ms, elapsed time = 8 ms.

964 ms.

100% -

@Query executed suc.. | bwuxgdeqdg.database.windows... | rstropek (1240) AdventureWorks2012 | 00:00:03 | 3936 rows

©IBASTA!

SQLQueryl.sql - bwu...2 (rstropek (1240))* >
SELECT COUNT(*) FROM Sales.SalesOrderDetail s

INNER JOIN Production.Product p ON s.ProductID = p.ProductID
WHERE ListPrice > 3000

SELECT_COUNT(*) FROM Sales.SalesOrderDetail s
INNER| LOOP JOIN Production.Product p ON s.ProductID = p.ProductID
WHERE ListPrice > 3eee

133% -~

[=1 Resuts | 3 Messages 2™ Execution plan

Execution Plans

Query analysis

SQLQuery1.sgl - bwuxgdeqdg.database

Help

Query 1l: Query cost
SELECT COUNT(*)

{relative to the batch): 0%
FROM Sales.SalesOrderDetail § I

NNER JOIN Production.Product p ON s.ProductID = p.ProductID WHERE ListPrice > 3000

) B3 @ |

= = i ()

—

= Compuse Sealar Stresm Aggregate ¢~ Nested Loops Clustered Index Scan (Clusterasd)

Cost: 0 & Cost: D % {Bggregate) (Inner Join) [Product] . [PK_Product_ProductID] [p]
= - Cost: 4 % Cost: 26 &

Cost: 14 %

?
:

Index Seek (MonClustered)
[SalesOrderDetail] . [IX SalesOrderDe._

Cost: 56 %

"

100%
FROM Sales.SalesOrderDetail S+INNER LOQP JOIN Production.Product p ON s.ProductID = p.Produc

i il k%

Query 2: Query cost
SELECT COUNT(*)

=

(relative to the batch):

| e——]
Stresm Aggregate < Nested Loops Index Scan (NonClustered)
SELECT Compute Scalar \Aggregate) (Tnner Join] [SalesOrderDetail] . [IX_SalesOzderDe..
Cost: 0 % Cost: 0 % =
Cost: D & Cosz: 3 3

Cost: 2 %

¥y

Clustered Index Seek (Clustered)
[Product] . [PE_Product_ProductID] [p]
Cost: 55 %

=

retronek’ THNMER TNTM

Drnadictdnr

[Resuhs | 13 Messages | 3™ Bxecution plan

SQL Server Execution Times:

CPU time = @ ms, elapsed time = @ ms.
Warning: The join order has been enforced because a local join hint is used.
SQL Server parse and compile time:

CPU time = @ ms, elapsed time = 18 ms.

(1 row(s) affected)
(1 row(s) affected)

SQL Server Execution Times: 3
CPU time = @ ms, elapsed time = 8 ms.

(1 row(s) affected)
(1 row(s) affected)

SQL Server Execution Times:)
CPU time = 78 ms, elapsed time = B565 ms.
SQL Server parse and compile time: *
CPU time = @ ms, elapsed time = @ ms.

©IBASTA!

<IBASTA!

Things to Consider

How often do you call over the network?

Latency, speed-of-light problem

Ratio between latency and service operation

Consider reducing network calls with caching (e.g. Redis cache) ...
... but make sure that you cache doesn't make perf worse!

How much data do you transfer?

Transfer less data (e.g. unnecessary database columns)
Make protocol more efficient (e.g. specific REST services or OData instead of generic services)

Measuring is important
The tools you use might do things you are not aware of (e.g. OR-mapper)

©IBASTA!

http://azure.microsoft.com/en-us/services/cache/

Tools

Telerik Fiddler
Web debugging proxy

Wireshark

Network packet analyzer

©IBASTA!

http://www.telerik.com/fiddler
https://www.wireshark.org/

<IBASTA!

Objectinstance

OBJECTREF Synchlk lndex J |T C O m pl | e r
~ Objectinstance ———

TypeHandle R .
T imstance Fields Just in Time Compiler
MethodTable
-2 GCInfo
0 Flags

S PreJITStub responsible for

e abi i triggering JIT

Deniain Interface 18 & Module
Viable Map (IVMap) 1s I Corklempniryps ™
siot 1 0___ Mkl - . . .
witeriace (it 2 o R Overwritten with a jump to
Mylnterface2 (Siot 3) 26 Default.ctorSiot - .
J _— System.Object
Slot 4 28 InterfaceMap Method Descriptors J IT com p | | e d CO d e
e 32 LLICL Call Pre-)IT Stub CodeOriL
Slot 1000 “M Call Pre-JIT Stub CodeOriL
W___ ToStrieg Call Pre-JIT Stub Code0riL
ot Nosp “% Call PreJiT ss CodeOrlL
“MyString” T Fimallm Method Descriptors
|| +—u ethodl IellodSIutTaile= jmp jitted addr |jitted sddr
HandleTable Method2 Call Pre-JIT Stub CodeOriL
Method2 Call Pre-JIT $tub CodeQril
omél-:.mr Method3 Call Pre-JIT Stub Code0riL
.cctor Call Pre-JIT Stub Code0riL
ctor
static string str
static ui = DXAAMAAAAR

Wylnterfacel < Mylnterfaced TypeHandl

:
MethodTable Flags | Impl Start Slat

Mylnterface2 Mylnterface2 TypeHandie Each interface map
MethodTabile ""'-I—-" Start Slet | entry size is 8 bytes

Image Source:
https://msdn.microsoft.com/en-us/magazine/cc163791.aspx

©IBASTA!

https://msdn.microsoft.com/en-us/magazine/cc163791.aspx

@ Perfarmance Monitor r P fM
(%) File Action View Window Help er On

o2 s .
®

Perform
4 [Mon| Available counters Added cc
=Er Select counters from computer:
- Count
3 '3 Data | <Local computer = W | | Brawse. .. |
> [Rep
JNE hLI"\I[ILEIUP - ”
NET CLR Jit l a
of IL Bytes Jitted
of Methods Jitted
%o Time in Jit

IL Bytes Jitted / sec
Standard Jit Failures
Total # of IL Bytes Jitted

.NET CLR Loading v oW

(%) File Action View Window Help

ElE=HE
@Performance ?@v|!ﬂix'|-—5|:|!|ll.‘||

a [Monitering Tools
B8 Performance Monitor
i+ [y Data Collector Sets

Instances of selected object:

\\WIN-S70J1Q907TV
) NET CLR Jit StockTraderRI
» [Reports # of Methods Jitted 1.191,000

©IBASTA!

File Collect Memory Size Help

Iain View Help (F1 Ty

C:\Users\Rainer\Documents "

Filter: | |

PerfViewData_ngen.etl (unmerged)
|ﬂ Tracelnfo

|ﬂ Processes

a Events

[5] cPU Stacks

[=] Disk I/0 Stacks

[5] File 110 Stacks

[Z] Met Virtual Reserve Stacks

[G Heap Net Mem (Coarse Sampling
[E] GC Heap Alloc Ignore Free [Coarse §
[E sc Heap Net Mem Stacks

[E] GC Heap Alloc Ignore Free Stacks
[E] Gen 2 Object Deaths Stacks

[E] Image Load Stacks

[£] Managed Load Stacks

Ei Exceptions Stacks

[E] Pinning At GC Time Stacks

[E] CCW Ref Count Stacks

[E] Any Stacks

[E] Any Stacks {with Tasks) Stacks

%] GCStats
B isiac]

~|%] EventStats
I [NISExpress
[F=7 Mhv Music

Welcome to PerfVie

PerfView is an applicatior

JIT Analysis

PerfView

Pressing the F1 key will c
see the User's Guide . If y
see the feedback instruct

If you are new to PerfV
minutes to walk through.

» | JIT Stats for for Process 8668: StockTraderRI

+ CommandLine: "C:\Prism'\compositewpf V5 StockTrader RI'Desktop'StockTraderRI\bin'Debug\StockTraderRI exe”
. s Process CPU Time: 14.061 msec
Optit | . Total Number of JIT compiled methods - 1.047
Perfv| + Total MSec JIT compiling - 804
. + JIT compilation time as a percentage of total process CPU time : 5.7%
- Individual JIT Events
e View in Excel

¢ JIT Perf Users Guide

View This process does not use background JIT compilation. If there is a lot of JIT time and NGEN is not an possible you should consider using Background JIT compilation. See Guide
The 1| te Backsround JIT for more.

that § Below is a table of the time taken to JIT compile the methods used in the program, broken down by module. If this time is significant you can eliminate it by NGening your application.
eithe| This will improve the startup time for your app.

If the| The list below is also useful for tuning the startup performance of your application in general. In general you want as little to be run duning startup as possible. If you have 1000s of

clicki| methods being compiled on startup vou should try to defer some of that ion until absolutely ry.
hel P. Name \JitTime| Num IL Na.tive
msec || Methods | Size Size
* | |[TOTAL 803.6 1.047 _||70.632) 271.247
C:\Prism\compositewpf\V5\Stock Trader RI\Desktop' StockTraderRI\bin'Debug\Microsoft Practices Prism Composition.dll 207.6 239 12538 38953
C:\Prism\compositewpf\V5\StockTrader RI\Desktop'StockTraderRI\bin'Debug'StockTraderRI.ChartControls.dll 99.7 127 16.738| 74.288
C:\Prism'compositewpf\V5\Stock Trader RT\Desktop'StockTraderRI'bin'Debug\ Microsoft Practices EnterpriseLibrary Logging dll 90.8 100 6315 || 25484
C:\Prism'\compositewpf V5 StockTrader RI\Desktop'StockTraderRI'bin'Debug'Microsoft. Practices Prism MefExtensions.dll 76.4 65 2298 6202
C:\Prism'compositewpf'V5'StockTrader RI'\Desktop!StockTraderRI\bin'Debug'\Stock TraderRI Modules. Position.dll 53.1 147 5.166 || 25.396
C:\Prism'compositewpfV5'StockTrader RI\Desktop'StockTraderRI'bin'Debug'Stock TraderRT exe 50.9 39 1527 6977
C:'"Prism'\compositewpf\V35\Stock Trader RT\Desktop'Stock TraderRI'bin'Debug'Microsoft Practices Prism Mvwvm dll 40.0 50 2323 | 6446
C:\Prism'\compositewpf\V5'StockTrader RI'Desktop'StockTraderRI'bin'Debug'Stock TraderRI Infrastructure. dll 31.2 76 2.050 || 10276
C:\Windows'Microsoft Net\assembly\GAC_MSIL\UIAutomationTypes'v4.0_4.0.0.0__31bf3856ad364e35 \ULAutomationTypes.dll 29.1 33 15.548(43.877
C:\Prism\compositewpf|V5\StockTrader RI'\Desktop'StockTraderRI'bin'Debug' StockTraderRI. Modules Market dll 27.6 37 1.613 | 7944
{ foopositan o VSIS 2 dar BT ekt S LT da BT i Dby o W e co e o5 Deactizas Deiogy DuhQuhEo oy

©IBASTA!

NGEN — Native Image Generator

Generates native images for assembly and dependencies
Reference counting

Advantages

Better startup time (no JITing, faster assembly loading)
Smaller memory footprint (code sharing between processes, important in RDS scenarios)

Disadvantages

NGEN has to be called (also for updates) — requires installer (incl. admin privileges)
NGEN takes time (longer install time)

NGEN images are larger on disk

Native code slightly less performant than JIT'ed code

©IBASTA!

Display NGEN’ed images
ngen display

Install assembly
ngen install StockTraderRI.exe

Uninstall assembly
ngen uninstall StockTraderRI.exe

NGEN

Ahead-of-time Compilation

Note that it is important to
use the correct version of

NGEN

64bit:
c\Windows\Microsoft. NET\Fra
meworko4\v4.0.30319\

32bit:
CA\Windows\Microsoft. NET\Fra
mework\v4.0.30319\

©IBASTA!

https://msdn.microsoft.com/en-us/library/6t9t5wcf%28v=vs.110%29.aspx

NGEN/JIT Tips

WiX installer framework supports NGEN'ing

How To: NGen Managed Assemblies During Installation

Further optimization with MPGO (.NET 4.5)

Managed Profile Guided Optimization Tool
Generate profile data consumed by NGEN to optimize native images (disk layout)

Opt-in to background JIT (NET 4.5)

Use System.Runtime.ProfileOptimization class

©IBASTA!

http://wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/ngen_managed_assemblies.html
https://msdn.microsoft.com/en-us/library/hh873180%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.profileoptimization(v=vs.110).aspx

<IBASTA!

CLR Memory Management

CLR is a stack-based runtime
Value types

Managed heap

Managed by the CLR
Allocating memory is usually very fast
When necessary (e.g. thresholds, memory pressure, etc.), unreferenced memory is freed

Generations of objects

Gen 0,1, and 2
Large objects (>85k bytes) are handled differently (large object heap)

©IBASTA!

CLR Memory Management

Different GC strategies

Workstation (background) garbage collection

Server garbage collection (optimized for throughput)
Choose via config setting

Concurrent collection for Gen 2 collections
You can allocate small objects during Gen 2 collection

Background GC

For workstation in .NET >= 4, for server in NET >= 45
For details see MSDN

©IBASTA!

https://msdn.microsoft.com/en-us/library/ms229357(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee787088%28v=vs.110%29.aspx

Memory Management T1ps

Avoid allocating unnecessary memory
This would raise GC pressure
Consider weak references for large objects

Reuse large objects

Use memory perf counters for analysis
See MSDN for details

Be careful when inducing GC with GC Collect

Add GC.Collect only if you are sure that it makes sense

©IBASTA!

https://msdn.microsoft.com/en-us/library/ms404247(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/x2tyfybc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.gc.collect(v=vs.110).aspx

Memory Management T1ps

Hunt memory leaks and remove them
See my memory leak hunting challenge on Codeproject

Suppress GC during perf critical operations

Use GC latency modes for that
Use this feature with care

©IBASTA!

http://www.codeproject.com/Articles/870053/Challenge-How-many-memory-leaks-can-you-find
http://www.codeproject.com/Articles/870053/Challenge-How-many-memory-leaks-can-you-find
https://msdn.microsoft.com/en-us/library/bb384202(v=vs.110).aspx

Summary

Prepare your optimization projects appropriately

Write obvious code first
Measure to find the right places to optimize

Use profilers
Make small steps and gather feedback

Use the cloud

©IBASTA!

