
Zukunft der Anwendungsentwicklung im Enterprise Umfeld

ADC 2016

Rainer Stropek
software architects gmbh

http://www.timecockpit.com

rainer@timecockpit.com

@rstropek

Keynote

Web

Mail

Twitter

http://www.timecockpit.com/
mailto:rainer@timecockpit.com

Agenda

Microsoft ist dabei, sich drastisch zu verändern, das ist nicht zu übersehen. Roslyn,

.NET Core, Visual Studio „15“, TypeScript, Open Source, Container, wöchentlich neue

Azure-Dienste – es ist schwierig, auf dem Laufenden zu bleiben. Speziell im

Enterprise-Umfeld wird die „neue Microsoft“ kritisch beäugt. Sind die neuen

Technologien Enterprise-tauglich oder handelt es sich nur um Spielereien für

Startups? Was wird besser durch sie? Warum ist die Veränderung überhaupt

notwendig? Rainer Stropek, langjähriger Azure MVP und MS Regional Director geht

in seiner Keynote auf diese Fragen ein. Ausgehend von generellen Trends in der

Softwarearchitektur und Organisation von IT-Projekten wie DevOps und

Microservices zeigt er, welches Potential in den neuen Technologien steckt. Rainer

spricht darüber, wie Microsoft eine interessante Strategie verfolgt, die

Softwareentwicklung im Enterprise-Umfeld auf ein ganz neues Niveau heben kann.

Your Host

Rainer Stropek
Developer, Entrepreneur

Azure MVP, MS Regional Director

IT-Visions

Contact
software architects gmbh

rainer@timecockpit.com

Twitter: @rstropek

mailto:rainer@timecockpit.com

Creative Commons,

Source: Alan O'Rourke, https://flic.kr/p/ykLoWK

https://flic.kr/p/ykLoWK

Microsoft is Changing – Examples

Ubuntu Subsystem in Windows
Running unmodified, native Linux binaries in Windows without VM or Container

https://msdn.microsoft.com/en-us/commandline/wsl/about

Open Source PowerShell on Linux
https://github.com/PowerShell/PowerShell

Containers, Participating in Docker Ecosystem
E.g. microsoft/dotnet, microsoft/powershell

Docker on Windows

https://msdn.microsoft.com/en-us/commandline/wsl/about
https://github.com/PowerShell/PowerShell
https://msdn.microsoft.com/en-us/virtualization/windowscontainers/about/about_overview

Demo
Start Bash on Windows

cd /mnt/c/…
vim some-js.js
node some-js.js

Run Powershell on Linux
Docker: microsoft/powershell
$something = „asdf“
Write-Host $something
Get-Item tmp

Run Docker on Windows
docker run -it –rm microsoft/windowsservercore cmd
docker run –d –p 8080:80 microsoft/iis

Microsoft is changing

Microsoft’s Change
Earnings Release FY17 Q1

Source: Microsoft Investor Relations

https://www.microsoft.com/en-us/Investor/earnings/FY-2017-Q1/press-release-webcast

Enterprises are Changing

Digital Interdependence

Digital ecosystem readiness
“79% of […] top performers […] participate in a digital ecosystem”

Interoperability

External mindset

Focus on managing interdependence

BI/Analytics and Cloud Services
Top two investment areas of top performers

Source: 2017 CIO Agenda, Gartner Inc.; available at http://www.gartner.com/imagesrv/cio/pdf/Gartner_CIO_Agenda_2017.pdf

http://www.gartner.com/imagesrv/cio/pdf/Gartner_CIO_Agenda_2017.pdf

Environment is Changing

Source: Gartner, Oct. 2016, available via http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/

Azure Machine Learning, R,

Cognitive Services, IoT Hub

Hololens, Windows

Holographic, Azure BaaS

Bot Framework,

Azure Platform

Xamarin, Web

Technologies, DevOps, APIs

http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017/

What does that mean

for me as an

enterprise developer?

Consequences on .NET
Why and how had .NET to change?

Focus on Cloud

(IaaS, PaaS, aPaaS, SaaS)

Make all dev tools and

frameworks Open Source

Have a cross-platform solution

Visual Studio is not enough

Visual Studio Code

Command line interfaces

Great Git support, GitHub

Cloud-first, cloud-only,

SaaS for devs (VSTS)

.NET Foundation

Redesign .NET for modularity

(„a la carte“)

Revenue

Costs

Enhancements to Windows

for devs Ubuntu subsystem for Win

CompeteXamarin

Redesign .NET Compiler

CLR

Framework

Switch to .NET Core

Don‘t rush things

Build components based on .NET Standard
Getting ready step-by-step

Re-think your software architecture
Mini- and Microservices

APIs

Various UI platforms

Microservices

What are Microservices?

Small, autonomous services working together
Single responsibility principle applied to SOA

See also concept of Bounded Context

Best used with DevOps and continuous deployment
Enhance cohesion, decrease coupling, enable incremental evolvement

How small are Microservices?
It depends (e.g. team structure, DevOps maturity, etc.)

“… one agile team can build and run it”, “… can be rebuilt by a small team in two weeks”

Find an individual balance

Autonomous = deploy changes without affecting others
Technology- and platform-agnostic APIs

See also https://en.wikipedia.org/wiki/Microservices

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Domain-driven_design#Strategic_domain-driven_design
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Microservices

Microservices

Microservices

Modeled

around business

concepts

Culture of

Automation

Hide

implementation

details

Decentralized
Independently

deployed

Isolate failures

Highly

observable

Fundamental ideas

Work alongside many

state-of-the-art

approaches for software

development
Agile development techniques

Continuous Integration/Delivery

DevOps

Cloud Computing

Containers

Why Microservices?

Work well in heterogeneous environments
Right tool for the job

Available skills of team members

Grown environment (e.g. M&A, changing policies, changing overall designs)

Easier to test/adopt new technologies
Reduce risk and cost of failure

New platforms (e.g. Node.js instead of .NET), new versions (e.g. .NET Core),

Resilience
Reduce single point of failures

Support different SLAs for difference modules (costs, agility)

Separation of services add complexity (e.g. network)  criticism of Micrservices

https://en.wikipedia.org/wiki/Microservices#Criticism

Why Microservices?

Let people take responsibility
Teams “own” their services

You build it, you run it

Scaling
Fine-grained scaling is possible

Simplify deployment of services
Overall, deployment of many Microservices might be more complex  criticism

Deployment patterns: https://www.nginx.com/blog/deploying-microservices/

https://www.nginx.com/blog/deploying-microservices/

Why Microservices?

Composability
Hexagonal architecture

Ability to replace system components
Outdated technology

Changed business requirements

http://alistair.cockburn.us/Hexagonal+architecture

Why Not? (Examples)

Harder to debug and troubleshoot
Distributed system

Possible mitigation: Mature logging and telemetry system

Performance penalty
Network calls are relatively slow

Possible mitigation: Remote calls for larger units of work instead of chatty protocols

No strong consistency
We are going to miss transactions!

Possible mitigation: Idempotent retries

http://www.servicedesignpatterns.com/WebServiceInfrastructures/IdempotentRetry

Why Not? (Examples)

System is too small
For small systems, monolithic approach is often more productive

Cannot manage a monolith (e.g. deployment)? You will have troubles with Microservices!

Environment with lots of restrictions
Microservices need a high level of autonomy

Harder to manage
You have to manage lots of services which are redeployed regularly

Possible mitigation: DevOps, Automation

DevOps

The converged DevOps lifecycle

Develop + Test

Plan + Track

Monitor + Learn

Release

Developers IT Ops

Shift to DevOps

Old World
Focus on planning

Compete, not collaborate

Static hierarchies

Individual productivity

Efficiency of process

Assumptions, not data

New World
Focus on delivering

Collaborate to win

Fluent and flexible teams

Collective value creation

Effectiveness of outcomes

Experiment, learn and respond

PRA C T I C E S

Automated Testing

Continuous Integration

Continuous Deployment

Release Management

PRA C T I C E S

Usage Monitoring

Telemetry Collection

Testing in Production

Stakeholder Feedback

PRA C T I C E S

Testing in Production

Usage Monitoring

User Telemetry

Stakeholder feedback

Feature flags

PRA C T I C E S

Code Reviews

Automated Testing

Continuous Measurement

PRA C T I C E S

Application Performance Management

Infrastructure as Code

Continuous Delivery

Release Management

Configuration Management

Automated Recovery

PRA C T I C E S

Application Performance Management

Infrastructure as Code

Continuous Deployment

Release Management

Configuration Management

Automated Recovery

PRA C T I C E S

Enterprise Agile

Continuous Integration

Continuous Deployment

Release Management

FLOW OF

CUSTOMER VALUE

TEAM

AUTONOMY

& ENTERPRISE

ALIGNMENT

BACKLOG refined

with LEARNING

EVIDENCE

gathered in

PRODUCTION

MANAGED

TECHNICAL

DEBT

PRODUCTION

FIRST MINDSET

INFRASTRUCTURE

is a FLEXIBLE

RESOURCE

DevOps habits and practices

How to Change?

Conway‘s Law

„Any organization that designs a system will inevitably produce

a design whose structure is a copy of the organization’s

communication structure”

Organizational hurdles for Microservices
Tightly-coupled organizations

Geographically distributed teams

Missing tools (e.g. self-service cloud infrastructure, CI/CD tools)

Inappropriate security policies

Unstable or immature service that frequently changes

Missing culture of taking ownership (need someone to blame)

Cope with many different and new technologies

Source: Conway, How Do Committees Invent, Datamation magazine, April 1968

Organisational Helpers

Co-locate teams
One team responsible for a single service should be co-located

Embrace open source development style
Works internally, too

Internal consultants, custodians and trusted committers
Quality gateways

Servant leaders

Step-by-step approach

Be clear in communication
E.g. responsibilities, long-term goals, changing roles

Modern Architects…

…don‘t create perfect end products
…help creating “a framework in which the right systems can emerge, and continue to grow”

…understand the consequences of their decisions
…code with the team (“architects should code”, “coding architect”)

…aims for a balance between standardization and freedom
Build skills for a certain technology vs. right tool for the right job

…create guiding principals and practices
Example for principals (largely technology-independent): https://12factor.net/

Example for practices (often technology-dependent): .NET Core Coding Guildelines

Recommended reading: Newman, Sam. Building Microservices, O'Reilly Media

https://12factor.net/
https://github.com/dotnet/corefx/tree/master/Documentation/coding-guidelines

Bimodal Enterprise

Mode 1:

Predictability and Stability

Mode 2: Exploratory

We have to deliver in mode 1

to get trusted for mode 2

Source: Gartner, Deliver on the Promise of Bimodal, Feb. 2016, available via

http://www.gartner.com/it-glossary/bimodal/

http://www.gartner.com/it-glossary/bimodal/

Zukunft der Anwendungsentwicklung im Enterprise Umfeld

Q&A

Rainer Stropek
software architects gmbh

rainer@timecockpit.com

http://www.timecockpit.com

@rstropek

Thank your for coming!

Mail

Web

Twitter

