
C#-Performancetuning

Rainer Stropek | timecockpit

Your Host

Rainer Stropek
Developer, Entrepreneur

Azure MVP, MS Regional Director

Contact
software architects gmbh

rainer@timecockpit.com

Twitter: @rstropek

mailto:rainer@timecockpit.com

Agenda (German)
Der Code ist fertig, die Kunden beschweren sich über schlechte Performance. Was nun? In dieser zweiteiligen Session zeigt

Rainer Stropek Wege aus solchen Krisen. Im ersten Teil erarbeiten wir die Grundlagen.

• Was beeinflusst die Performance von .NET-Anwendungen?

• Welche Mythen gibt es, die man getrost vergessen kann?

• Warum beeinflussen JIT und Garbage Collector die Performance so stark?

• Wie bereitet man Performanceprofiling richtig vor?

• Welche grundlegenden Techniken gibt es dafür?

Solche und ähnliche Fragen sind Thema der Session.

Im zweiten Teil gehts ins Detail. Rainer zeigt anhand praktischer Beispiele, wie man Tools in und um Visual Studio

verwendet, um Performancekillern auf die Spur zu kommen. Sie lernen unter anderem die Profiling-Tools von Visual Studio

und das Microsoft-Werkzeug PerfView kennen. Exemplarisch wird Rainer in der Session auch Unterschiede zu

kommerziellen Profiling-Werkzeugen demonstrieren.

Why Optimizing? Examples …

Customer satisfaction
Customers report performance problems

Reduce churn rate

Tip: Ask you users if they are leaving because of poor performance

Raise conversion rate
Consider the first impression potential users have from your software

Tip: Ask your users why they are not buying

Reduce TCO of your application
Performance problems waste your user’s time = money

Reduce TCO for your customers by lowering system requirements

Cloud environment is too expensive

Anti-Patterns
How to ruin every optimization project

Optimization Anti-Patterns

Add optimizations during initial development
Write obvious (not naïve) code first measure optimize if necessary

Perf problems will always be where you don’t expect them

Optimize code without measuring
Without measuring, optimized code is often slower

Make sure to know if your optimization brought you closer to your goals

Optimize for non-representative environments
Specify problematic environments as accurate as possible

Test your application on systems similar to your customers’ environments

Hardware, software, test data (consider data security)

Optimization Anti-Patterns

Optimization projects without concrete goals
Add perf goals (quantifiable) in requirements

You could spend endless time optimizing your applications

Optimize to solve concrete problems (e.g. for memory, for throughput, for response time)

Soft problems or goals
Strive for quantifiable perf metrics in problem statements and goals

Objective perf problems instead of subjective stories

Optimize without a performance baseline
Always know your performance baseline and compare against it

Reproducible test scenarios are important

Optimization Anti-Patterns

Optimize without profound knowledge about your platform
Know your runtime, platform, hardware, and tools

Optimize the wrong places
E.g. optimize C# code when you have a DB-related problem

Spend enough time on root-cause analysis for your perf problems

Ship debug builds
Release builds are much faster than debug builds

Optimization Anti-Patterns

Optimize everything
Focus on performance-critical aspects of your application instead

Pareto principle (80/20)

Architect without performance in mind
Avoid architecture with inherent performance problems

If necessary, consider prototyping in early project stages

Confuse performance and user experience
Async programming might not be faster but delivers better user experience

http://en.wikipedia.org/wiki/Pareto_principle

Optimization Projects
Prepare optimization projects for success

Good Optimization Projects

1. Plan for it
Put it on your backlog

Get (time) budget for it (time-boxing); consider a business case for your optimization project

Make yourself familiar with corresponding tools

2. Prepare a defined, reproducible test scenario
Hardware, software, network

Test data (e.g. database)

Application scenarios (automate if possible)

3. Measure performance baseline
E.g. CPU%, memory footprint, throughput, response time

http://en.wikipedia.org/wiki/Timeboxing

Good Optimization Projects

4. Define performance goals
Must be measurable

Involve stakeholders (e.g. product owners, customers, partners, etc.)

5. Optimize – Measure – Analyze Cycle
Don’t change too many things at the same time

Measure after optimizing

Compare against baseline; if necessary, reset your baseline

Check if you have reached performance goals/time-box

6. Ask for feedback in real-world environments
E.g. friendly customers, testing team

Good Optimization Projects

7. Document and present your work
Architecture, code, measurement results

Potentially change your system requirements, guidelines for admins, etc.

Share best/worst practices with your peers

8. Ship your results
Remember: Ship release builds

Continuous deployment/short release cycles let customers benefit from perf optimizations

Consider hotfixes

Use the Cloud

Easy to build different execution environments
Number of processors, RAM, different operating systems, etc.

Performance of database clusters

Don’t wait for admins to setup/deliver test machines/VMs

Design for scale-out and micro-services
Easier to add/remove VMs/containers than scaling up/down

Use micro-services and use e.g. Azure Websites or Docker to map to server farms

Extremely cost efficient
You only pay for the time your perf tests last

You can use your partner benefits, BizSpark benefits, etc.

Use the Cloud

Less data security issues if you use artificial test data

Ability to run large-scale load tests
Gather perf data during long-running, large-scale load tests

SaaS enables you to optimize for a concrete environment
Economy of scale

Perf Influencers
What influences the performance of your applications?

Performance influencers

Performance of storage system
Database, file system, etc.

Performance of services used
E.g. external web services

Network characteristics
How chatty is your application?

Latency, throughput, bandwidth

Especially important in multi-tier applications

http://en.wikipedia.org/wiki/Latency_(engineering)
http://en.wikipedia.org/wiki/Throughput

Performance influencers

Efficiency of your algorithms
Core algorithms

Parallel vs. sequential

Platform characteristics
JIT compiler

Garbage collector

Hardware
Number of cores, 64 vs. 32 bits, RAM, SSDs, etc.

Database
DB performance considerations

Influencers

Network connection to the database
Latency, throughput

Do you really need all the data you read from the database (e.g. unnecessary columns)?

Generation of execution plan
Statement parsing, compilation of execution plan

Bound to CPU-power of database server

Can’t you simplify your query to speed up parse and compile time?

Query execution
Complexity of query, index optimization, etc.

You might need a database expert/admin to tune your SQL statements

Influencers

Process DB results
Turn DB results into .NET objects (O/R mappers)

DB access characteristics
Many small vs. few large statements

Lazy loading

DB latency influences DB access strategy

Finding problematic queries

SQL Server Profiler
Create and manage traces, replay trace results

Will pre deprecated

SQL Server Extended Events
Collect information to troubleshoot or identify performance problems

Dynamic Management Views (DMV)
sys.dm_exec_query_stats

sys.dm_exec_cached_plans

Monitoring Azure SQL Database Using DMVs

https://msdn.microsoft.com/de-de/library/ms181091.aspx
https://msdn.microsoft.com/en-us/library/bb630282.aspx
https://msdn.microsoft.com/en-us/library/ms189741.aspx
https://msdn.microsoft.com/en-us/library/ms187404.aspx
https://msdn.microsoft.com/en-us/library/azure/ff394114.aspx

DMVs
SELECT TOP 10 query_stats.query_hash AS "Query Hash",

SUM(query_stats.execution_count) AS "Execution Count",
MAX(query_stats.total_worker_time) AS "Max CPU Time",
MIN(query_stats.statement_text) AS "Statement Text"

FROM
(SELECT QS.*, SUBSTRING(ST.text, (QS.statement_start_offset/2) + 1,

((CASE statement_end_offset WHEN -1
THEN DATALENGTH(st.text)
ELSE QS.statement_end_offset END

- QS.statement_start_offset)/2) + 1) AS statement_text
FROM sys.dm_exec_query_stats AS QS
CROSS APPLY sys.dm_exec_sql_text(QS.sql_handle) as ST)

as query_stats
GROUP BY query_stats.query_hash
ORDER BY 3 DESC;
GO

Find long running queries in Azure

See also https://msdn.microsoft.com/en-

us/library/azure/ff394114.aspx

https://msdn.microsoft.com/en-us/library/azure/ff394114.aspx

Finding problematic queries

TODO: IntelliTrace

TODO: RedGate SQL

Client Statistics
Query analysis

Execution Plans
Query analysis

Services, Network

Things to Consider

How often do you call over the network?
Latency, speed-of-light problem

Ratio between latency and service operation

Consider reducing network calls with caching (e.g. Redis cache) …

… but make sure that you cache doesn’t make perf worse!

How much data do you transfer?
Transfer less data (e.g. unnecessary database columns)

Make protocol more efficient (e.g. specific REST services or OData instead of generic services)

Measuring is important
The tools you use might do things you are not aware of (e.g. OR-mapper)

http://azure.microsoft.com/en-us/services/cache/

Tools

Telerik Fiddler
Web debugging proxy

Wireshark
Network packet analyzer

http://www.telerik.com/fiddler
https://www.wireshark.org/

Just in Time Compiler
Influencing startup time through the JITer

JIT Compiler
Just in Time Compiler

PreJITStub responsible for

triggering JIT

Overwritten with a jump to

JIT compiled code

Image Source:

https://msdn.microsoft.com/en-us/magazine/cc163791.aspx

https://msdn.microsoft.com/en-us/magazine/cc163791.aspx

PerfMon
Collect JIT data with PerfMon

JIT Analysis
PerfView

NGEN – Native Image Generator

Generates native images for assembly and dependencies
Reference counting

Advantages
Better startup time (no JITing, faster assembly loading)

Smaller memory footprint (code sharing between processes, important in RDS scenarios)

Disadvantages
NGEN has to be called (also for updates) – requires installer (incl. admin privileges)

NGEN takes time (longer install time)

NGEN images are larger on disk

Native code slightly less performant than JIT’ed code

NGEN
Display NGEN’ed images
ngen display

Install assembly
ngen install StockTraderRI.exe

Uninstall assembly
ngen uninstall StockTraderRI.exe

Ahead-of-time Compilation

Note that it is important to

use the correct version of

NGEN
64bit:

c:\Windows\Microsoft.NET\Fra

mework64\v4.0.30319\

32bit:

C:\Windows\Microsoft.NET\Fra

mework\v4.0.30319\

https://msdn.microsoft.com/en-us/library/6t9t5wcf%28v=vs.110%29.aspx

NGEN/JIT Tips

WiX installer framework supports NGEN’ing
How To: NGen Managed Assemblies During Installation

Further optimization with MPGO (.NET 4.5)
Managed Profile Guided Optimization Tool

Generate profile data consumed by NGEN to optimize native images (disk layout)

Opt-in to background JIT (.NET 4.5)
Use System.Runtime.ProfileOptimization class

http://wixtoolset.org/documentation/manual/v3/howtos/files_and_registry/ngen_managed_assemblies.html
https://msdn.microsoft.com/en-us/library/hh873180%28v=vs.110%29.aspx
https://msdn.microsoft.com/en-us/library/system.runtime.profileoptimization(v=vs.110).aspx

Garbage Collector
How memory management influences performance

CLR Memory Management

CLR is a stack-based runtime
Value types

Managed heap
Managed by the CLR

Allocating memory is usually very fast

When necessary (e.g. thresholds, memory pressure, etc.), unreferenced memory is freed

Generations of objects
Gen 0, 1, and 2

Large objects (>85k bytes) are handled differently (large object heap)

CLR Memory Management

Different GC strategies
Workstation (background) garbage collection

Server garbage collection (optimized for throughput)

Choose via config setting

Concurrent collection for Gen 2 collections
You can allocate small objects during Gen 2 collection

Background GC
For workstation in .NET >= 4, for server in .NET >= 4.5

For details see MSDN

https://msdn.microsoft.com/en-us/library/ms229357(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ee787088%28v=vs.110%29.aspx

Memory Management Tips

Avoid allocating unnecessary memory
This would raise GC pressure

Consider weak references for large objects

Reuse large objects

Use memory perf counters for analysis
See MSDN for details

Be careful when inducing GC with GC.Collect
Add GC.Collect only if you are sure that it makes sense

https://msdn.microsoft.com/en-us/library/ms404247(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/x2tyfybc(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.gc.collect(v=vs.110).aspx

Memory Management Tips

Hunt memory leaks and remove them
See my memory leak hunting challenge on Codeproject

Suppress GC during perf critical operations
Use GC latency modes for that

Use this feature with care

http://www.codeproject.com/Articles/870053/Challenge-How-many-memory-leaks-can-you-find
http://www.codeproject.com/Articles/870053/Challenge-How-many-memory-leaks-can-you-find
https://msdn.microsoft.com/en-us/library/bb384202(v=vs.110).aspx

Summary

Prepare your optimization projects appropriately

Write obvious code first
Measure to find the right places to optimize

Use profilers

Make small steps and gather feedback

Use the cloud

