
Rainer Stropek | time cockpit

Surviving C#-Codereviews

Your Host

Rainer Stropek
Developer, Entrepreneur

Azure MVP, MS Regional Director

Trainer at IT-Visions

Contact
software architects gmbh

rainer@timecockpit.com

Twitter: @rstropek

mailto:rainer@timecockpit.com

Agenda
Es ist nicht unüblich, dass externe oder interne Kunden Experten beauftragen, die C#-

Codebasis eines Projekts zu begutachten. Rainer Stropek, langjähriger MVP und MS Regional

Director, macht solche Projekte regelmäßig. In dieser Session erklärt er, worauf er dabei Wert

legt.

• Welche Tools setzt er ein, um Verbesserungspotenziale zu suchen?

• Wie findet er in großen Codebasen rasch die kritischen Bereiche?

• Welche Best und Worst Practices kontrolliert er?

• Wie würde er ein C#-Projekt aufsetzen, das jeden Codereview glänzend bestehen soll?

Auf solche Fragen wird Rainer in der Session eingehen. Sie erhalten eine konkrete Checkliste

von Punkten, die Sie bei Ihren Projekten beachten können, um die Qualität Ihres gelieferten C#-

Codes noch weiter zu verbessern.

Agenda
Introduction

Why Code Review Projects?

My Rules for Review Projects

Reviewing the code
Basics

Coding guidelines

Code structure

Documentation

Testing

Performance

Security

Reviewing the process
Automation

Source code handling

State of the art?

Development process

Team management

Summary
Recommendations

Why Code Review Projects?

Why Code Review Projects?

M&A
Buy company or source of a product

New management team

Customer-vendor relationship
Tip: Make code review criteria part of contract

Large customers buys software strategic for their business
Frequently: Large customer, small vendor

Team wants/needs external advice
Reviewer is a kind of external coach

Accompanying Reviews

Security review

Legal reviews
Who owns the source code?

License terms of dependencies?

Compliance to policies (internal/external)

Standard certifications
E.g. ISO

My Rules for Review Projects
Review Culture

Prerequisits

Fair, based on partnership
Anti-pattern: Find flaws to prove that something is wrong (e.g. reduce price)

Set realistic expectations
Estimate necessary time based on # of e.g. LOCs, person years, technologies

Clearly define scope (time-boxed vs. fixed scope)

Documentation: Level of detail and responsibility

Clarify availability of experts
Domain experts

People familiar with the project and the code

Send checklist/requirements upfront – it depends…

Culture

Be objective
Best/worst practices defined by vendors (e.g. Microsoft)

Clearly state if something is a subjective opinion

Be realistic
Every project has technical depts

Every project as resource constraints

Be honest
Be polite and appreciative, but be clear about weaknesses

Don’t just talk about bad things, call out good practices, too

Review process

Macro- and micro-level
Macro: E.g. Architectural aspects, technical roadmap

Micro: E.g. code quality

Manual vs. automated checks
Use tools to find examples for “dragons”, analyze them manually

E.g. long/complex, missing docs, high/low test coverage, many dependencies

Tool examples: NDepend, Visual Studio Code Metrics

http://www.ndepend.com/
https://msdn.microsoft.com/en-us/library/bb385914.aspx

Review process

Ask many questions
"Show me a piece of code that has recently been written and that you are proud of"

"Show me an example of technical dept"

"Show me a cricital piece of business logic and describe how it is tested and verified"

"Walk me through an important business process and describe how the software deals with it (layers, APIs, …)“

"What are your top three problems"

Speak with many different people
E.g. Business stakeholders, Managers (technical, project), Developers, Testers

New team members and seniors

Theory vs. real everyday practice

Spend some time alone with the code
Can you understand the system and the code?

The Basics

Basics

Do you have the complete source code?
“Are you sure that this is the code the users are currently using?

How can you be sure?” source code control, security, traceability

Does it compile? Warnings?
 Completeness, very basic quality checks

Can you/we debug?
 Staging, debugging capabilities

Basics

Can you/we run existing tests? Are they green?
 Basic quality analysis of tests

Can we create a new release together?
 Basic version management check

Coding guidelines

Goals, process

Find violations of best/good practices for C# code
Practices defined by Microsoft

Categories see e.g. Code Analysis for Managed Code Warnings

Goal: Make code more readable, maintainable, secure, etc.

Do
…focus on important things

…reference “official” guidelines (e.g. .NET Foundation Coding Guidelines)

Don’t…
…judge based on your (reviewer) personal coding style

…spend too much time on less important coding aspects

https://msdn.microsoft.com/en-us/library/ee1hzekz.aspx
https://github.com/dotnet/corefx/blob/master/Documentation/coding-guidelines/coding-style.md

Tools

Old, outdated: FxCop, StyleCop
Use Analyzers (e.g. StyleCop.Analyzers) instead

Visual Studio Code Analysis Tools

.NET Compiler Platform ("Roslyn") Analyzers
Analyzers on NuGet

Commercial 3rd party code analysis tools
E.g. ReSharper, NDepend

https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx
https://stylecop.codeplex.com/
https://github.com/DotNetAnalyzers/StyleCopAnalyzers
https://msdn.microsoft.com/en-us/library/dd264897.aspx
https://github.com/dotnet/roslyn-analyzers
https://www.nuget.org/packages?q=analyzers
https://www.jetbrains.com/resharper/
http://www.ndepend.com/

Tools

SonarQube with SonarLint for Visual Studio
Blog: SonarAnalyzer for C#: The Rule Engine You Want to Use

Tip: Ready-made Docker image (Docker Hub)

Good Azure support (e.g. AAD, Azure SQL DB)

SonarQube build tasks for TFS/VSTS (VS Marketplace)

http://www.sonarqube.org/
http://www.sonarlint.org/visualstudio/
http://www.sonarqube.org/sonaranalyzer-for-c-the-rule-engine-you-want-to-use/
https://hub.docker.com/_/sonarqube/
http://docs.sonarqube.org/display/PLUG/Plugin+Library
https://marketplace.visualstudio.com/items?itemName=ms-sonarsource.sonarqube

Resources (not complete!)

Wikipedia: Software Quality

.NET Foundation Coding Guidelines

MSDN
Analyzing Application Quality by Using Code Analysis Tools

Framework Design Guidelines

C# Programming Guide

.NET related papers
Patterns for Parallel Programming

Asynchronous Programming Patterns

Framework-related papers, books and articles

https://en.wikipedia.org/wiki/Software_quality
https://github.com/dotnet/corefx/tree/master/Documentation/coding-guidelines
https://msdn.microsoft.com/en-us/library/dd264897.aspx
https://msdn.microsoft.com/en-us/library/ms229042(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/67ef8sbd.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=19222
https://msdn.microsoft.com/en-us/library/jj152938(v=vs.110).aspx

Code structure

Criteria

Solutions and project structure
Monolithic? Too fine grained? Fits to size of the solution?

NuGet for library distribution

Clear separation of layers and modules
Separation of Concerns

Over-engineering
Often ask "why?"

Question "read for"-statements (automated testing, patching DLLs) - YAGNI?

https://en.wikipedia.org/wiki/Separation_of_concerns

Criteria

KISS - write the obvious code first
Look for premature optimizations, in particular parallel programming

Dependency management
External dependencies

Evaluation process for new dependencies

Process for keeping dependencies up to date

Isolation using DI/IoC

https://en.wikipedia.org/wiki/Dependency_injection
https://en.wikipedia.org/wiki/Inversion_of_control

Documentation

Documentation

Start with a question
"Imagine I am completely new in your team, what do you give me to read?"

Documentation of processes, guidelines, architecture

Reduce dependency –

but remember: Working software over comprehensive documentation

Documentation history
How old are the chapters – screenshots and samples are revealing ;-)

Naming consistency
Language consistency

Important business terms (glossary?)

http://agilemanifesto.org/

Documentation Types

Architectural and design documentation
Standards available (Wikipedia)

Code Documentation
C# XML Documentation

Inline code documentation

Tools: Sandcastle Help File Builder, DocFX

RESTful web APIs
Tools: Swagger, Swashbuckle, readme.io (commercial)

Conceptual documentation
Tools: Markdown, GitHub pages/Jekyll, MAML/SHFB, DocFX, Word

https://en.wikipedia.org/wiki/Software_architecture_description
https://github.com/EWSoftware/SHFB
https://dotnet.github.io/docfx/
http://swagger.io/
https://github.com/domaindrivendev/Swashbuckle
http://readme.io/
https://en.wikipedia.org/wiki/Markdown
https://pages.github.com/
https://jekyllrb.com/
http://ewsoftware.github.io/MAMLGuide/html/303c996a-2911-4c08-b492-6496c82b3edb.htm
https://dotnet.github.io/docfx/

Testing

Testing Checklist

Test types (not complete, see also Wikipedia)
Unit Tests

Integration Tests

UI Automation Tests

Manual Tests

Tests by customers (e.g. previews)

TiP (Test in Production)

Performance tests

Are the tests automated?
CI/CD

„Can we run the tests now?“

https://en.wikipedia.org/wiki/Software_testing

Unit Tests

Do they exist?

What's important?
Code coverage

Assertations

Documentation

Code quality in tests

Dependency Injection (many frameworks available, e.g. MEF, Unity)

Mocking (many frameworks available, MS Fakes built into VS)

Execution time

https://msdn.microsoft.com/en-us/library/dd460648(v=vs.110).aspx
https://github.com/unitycontainer/unity
https://msdn.microsoft.com/en-us/library/hh549175.aspx

Performance

Performance

Questions
"Show me some code where you fight with perf problems"

"Describe an example for an optimization that you did based on a profiling session"

"Describe an example for an optimization that you did based on telemetry findings"

"Show me an example of performance optimization using parallel programming“

Use of profilers
CPU, Memory

Tools: PerfView, VS Profilers, 3rd party commercial profilers (e.g. ANTS)

Use of telemetry
Tools: VS Application Insights, 3rd party commercial tools (e.g. Dynatrace)

https://www.microsoft.com/en-us/download/details.aspx?id=28567
https://msdn.microsoft.com/en-us/library/bb385749.aspx
https://www.red-gate.com/products/dotnet-development/ants-performance-profiler/
https://azure.microsoft.com/en-us/services/application-insights/
https://www.dynatrace.com/platform/offerings/ruxit/

Security

Security

Dedicated security review out of scope
However, code analysis contains security aspects

Examples for security basics covered
SQL Injections

Authentication and authorization in C# code

OWASP Top 10

Security-critical configuration values (e.g. connection strings)

Handling of API keys, certificates etc.

Automation

Automation

Why?
Agility

Reduce dependency on certain persons

Repeatable, consistent quality

Security (build and deployment servers)

Reduce costs

Categories
Build (CI)

Tests

Relase (CD)

Software distribution (e.g. installers, install scripts, containers, NuGet)

Automation

Staging process
Environments

Cost efficiency

Representative test environment for integration and performance tests

Version management
Standard: Semver

http://semver.org/

Source code Handling

Source code Handling

Source code control present?
One system or many solutions?

Integrated ALM solution?

Quality of source code management
E.g. Quality of checkins, comments,

links to other systems (e.g. backlog, support)

Documented process (e.g. pull requests, reviews)

Example: Contributing Code (.NET Foundation)

Security

https://github.com/dotnet/roslyn/wiki/Contributing-Code

State of the art?
Largely depends on the goals of the organization, here just some examples…

Technical Debts

What technical debts are present?
Outdated code, technologies or standards

Historical sins

Outdated dependencies, dependencies without maintenance

Technical road blockers for innovations (e.g. mobile)

Is the team aware of technical debts?

Is there a plan for overcoming technical depts?
Technical road map

Planned refactorings

Part of backlog?

See also: https://en.wikipedia.org/wiki/Technical_debt

https://en.wikipedia.org/wiki/Technical_debt

Cloud Readiness

Clusters
Fail-over

Load balancing

Ready for PaaS and/or containers?

Follow best practices of cloud vendors
E.g. retry logic

Contract and access management
Who owns the subscriptions?

User and permission management

See also: https://en.wikipedia.org/wiki/Technical_debt

https://en.wikipedia.org/wiki/Technical_debt

Process

Process

Specification
UI, API

Technical dept of specifications

"Show me the specification of a recently developed work item and

how it was implemented in code" (checkins)

Implementation reflects specification

Project management methodology
E.g. Scrum, Kanban

Process

Backlog
Product backlog

Sprint backlog

Size of WIP

Done-done Checklist
Existence

Completeness

Technical debt management
Code-level

Strategic and architectural debts

Process

Resource management
Estimations

Resource allocation (new projects vs. maintenance vs. support)

Support
Backflow to backlog (root-cause analysis)

Tools: VSTS, Zendesk

https://www.zendesk.com/

Team

Distribute learnings within the team
Root-cause analysis

Retrospection

Evolve guidelines and quality tools (more, reduce)

Trainings

Access to knowledge
Video learning courses

Books

Internal/external workshops

Lighthouse/side projects, technical studies

Summary

Summary

Use ALM

Live DevOps
„You build it, you run it“

Automate as much as possible
„If something hurts, do it more often“

Embrace agile development
Get better every day

Thank you for coming!
Questions?

