
Saves the day.

Workshop

µ-services

Rainer Stropek
software architects gmbh

http://www.timecockpit.com

rainer@timecockpit.com

@rstropek

Microservices

Web

Mail

Twitter

http://www.timecockpit.com/
mailto:rainer@timecockpit.com

Microservices are currently hot!

Source: https://www.google.com/trends/explore?q=Microservices, 2016-10-03

https://www.google.com/trends/explore?q=Microservices

Introduction
Basic Concepts of Microservices

What are Microservices?

Small, autonomous services working together
Single responsibility principle applied to SOA

See also concept of Bounded Context

Best used with DevOps and continuous deployment
Enhance cohesion, decrease coupling, enable incremental evolvement

How small are Microservices?
It depends (e.g. team structure, DevOps maturity, etc.)

“… one agile team can build and run it”, “… can be rebuilt by a small team in two weeks”

Find an individual balance

Autonomous = deploy changes without affecting others
Technology- and platform-agnostic APIs

See also https://en.wikipedia.org/wiki/Microservices

https://en.wikipedia.org/wiki/Single_responsibility_principle
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Domain-driven_design#Strategic_domain-driven_design
https://en.wikipedia.org/wiki/DevOps
https://en.wikipedia.org/wiki/Microservices

Loose Coupling

Tight Coupling
A change in one module usually forces a ripple effect of changes in other modules

See also Disadvantages of Tight Coupling

Loose Coupling
Components have little or no knowledge of the definitions of other components

Coupling is reduced by e.g. standards, queues, etc.

Microservices = loose coupling wanted
Single change  single deployment

No timing issues (if system A is deployed, system B needs update at the same time)

https://en.wikipedia.org/wiki/Coupling_(computer_programming)#Disadvantages

Cohesion

Highly cohesive systems
Functionality is strongly related

Modules belong together

Microservices = high cohesion wanted
Functions grouped in a services because all contribute to a single well-defined task

Reduce risk that a requirement concerns many different system components

Bounded Context

Microservices often

represent bounded

contexts

Business-focused design
Less technical-focused design

based on technical layers

Source: http://martinfowler.com/bliki/BoundedContext.html

http://martinfowler.com/bliki/BoundedContext.html

Microservices

Microservices

Modeled

around business

concepts

Culture of

Automation

Hide

implementation

details

Decentralized
Independently

deployed

Isolate failures

Highly

observable

Fundamental ideas

Work alongside many

state-of-the-art

approaches for software

development
Agile development techniques

Continuous Integration/Delivery

DevOps

Cloud Computing

Containers

Why? Why not?

Why Microservices?

Work well in heterogeneous environments
Right tool for the job

Available skills of team members

Grown environment (e.g. M&A, changing policies, changing overall designs)

Easier to test/adopt new technologies
Reduce risk and cost of failure

New platforms (e.g. Node.js instead of .NET), new versions (e.g. .NET Core),

Resilience
Reduce single point of failures

Support different SLAs for difference modules (costs, agility)

Separation of services add complexity (e.g. network)  criticism of Micrservices

https://en.wikipedia.org/wiki/Microservices#Criticism

Why Microservices?

Let people take responsibility
Teams “own” their services

You build it, you run it

Scaling
Fine-grained scaling is possible

Simplify deployment of services
Overall, deployment of many Microservices might be more complex  criticism

Deployment patterns: https://www.nginx.com/blog/deploying-microservices/

https://www.nginx.com/blog/deploying-microservices/

Why Microservices?

Composability
Hexagonal architecture

Ability to replace system components
Outdated technology

Changed business requirements

http://alistair.cockburn.us/Hexagonal+architecture

Why Not? (Examples)

Harder to debug and troubleshoot
Distributed system

Possible mitigation: Mature logging and telemetry system

Performance penalty
Network calls are relatively slow

Possible mitigation: Remote calls for larger units of work instead of chatty protocols

No strong consistency
We are going to miss transactions!

Possible mitigation: Idempotent retries

http://www.servicedesignpatterns.com/WebServiceInfrastructures/IdempotentRetry

Why Not? (Examples)

Harder to manage
You have to manage lots of services which are redeployed regularly

Possible mitigation: DevOps, Automation

System is too small
For small systems, monolithic approach is often more productive

Cannot manage a monolith (e.g. deployment)? You will have troubles with Microservices!

Environment with lots of restrictions
Microservices need a high level of autonomy

Team Organization

Conway‘s Law

„Any organization that designs a system will inevitably produce

a design whose structure is a copy of the organization’s

communication structure”

Organizational hurdles for Microservices
Tightly-coupled organizations

Geographically distributed teams

Missing tools (e.g. self-service cloud infrastructure, CI/CD tools)

Unstable or immature service that frequently changes

Missing culture of taking ownership (need someone to blame)

Cope with many different and new technologies

Source: Conway, How Do Committees Invent, Datamation magazine, April 1968

Organisational Helpers

Co-locate teams
One team responsible for a single service should be co-located

Embrace open source development style
Works internally, too

Internal consultants, custodians and trusted committers
Quality gateways

Servant leaders

Step-by-step approach

Be clear in communication
E.g. responsibilities, long-term goals, changing roles

Microservices Architects…

…don‘t create perfect end products
…help creating “a framework in which the right systems can emerge, and continue to grow”

…understand the consequences of their decisions
…code with the team (“architects should code”, “coding architect”)

…aims for a balance between standardization and freedom
Build skills for a certain technology vs. right tool for the right job

…create guiding principals and practices
Example for principals (largely technology-independent): https://12factor.net/

Example for practices (often technology-dependent): .NET Core Coding Guildelines

Recommended reading: Newman, Sam. Building Microservices, O'Reilly Media

https://12factor.net/
https://github.com/dotnet/corefx/tree/master/Documentation/coding-guidelines

Guidance, Governance

Samples
Small code samples vs. perfect examples from real world

Templates, code generators
Examples: Visual Studio Templates, .NET Core CLI, Angular CLI

Shared libraries
Be careful about tight coupling!

Example: Cross-platform libraries based on .NET Standard Library for cross-cutting concerns

Handle and track exceptions from principals and practices
Remember goal of Microservices: Optimize autonomy

 Exceptions should be allowed

https://github.com/dotnet/cli
https://cli.angular.io/
https://docs.microsoft.com/en-us/dotnet/articles/standard/library
https://en.wikipedia.org/wiki/Cross-cutting_concern

Shift to DevOps

Old World
Focus on planning

Compete, not collaborate

Static hierarchies

Individual productivity

Efficiency of process

Assumptions, not data

New World
Focus on delivering

Collaborate to win

Fluent and flexible teams

Collective value creation

Effectiveness of outcomes

Experiment, learn and respond

P R A C T I C E S

Automated Testing

Continuous Integration

Continuous Deployment

Release Management

P R A C T I C E S

Usage Monitoring

Telemetry Collection

Testing in Production

Stakeholder Feedback

P R A C T I C E S

Testing in Production

Usage Monitoring

User Telemetry

Stakeholder feedback

Feature flags

P R A C T I C E S

Code Reviews

Automated Testing

Continuous Measurement

P R A C T I C E S

Application Performance Management

Infrastructure as Code

Continuous Delivery

Release Management

Configuration Management

Automated Recovery

P R A C T I C E S

Application Performance Management

Infrastructure as Code

Continuous Deployment

Release Management

Configuration Management

Automated Recovery

P R A C T I C E S

Enterprise Agile

Continuous Integration

Continuous Deployment

Release Management

FLOW OF

CUSTOMER VALUE

TEAM

AUTONOMY

& ENTERPRISE

ALIGNMENT

BACKLOG refined

with LEARNING

EVIDENCE

gathered in

PRODUCTION

MANAGED

TECHNICAL

DEBT

PRODUCTION

FIRST MINDSET

INFRASTRUCTURE

is a FLEXIBLE

RESOURCE

DevOps habits and practices

Technical Aspects

Microservice Interfaces

From Monolith to Microservices

Image Source: Chris Richardson, Microservices – From Design to Deployment, NGINX, 2016

Interfaces

Small number of communication standards
Examples: HTTP/REST, OData, GraphQL, OpenID Connect

Goals: Interoperability, productivity (economy of scope), detect malfunctions

Practices and principles for typical use-cases needed
Status Codes

Data encoding

Paging

Dynamic filtering

Sorting

Long-running operations

…

See also https://speakerdeck.com/rstropek/restful-web-api-design

https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.odata.org/
http://graphql.org/
http://openid.net/connect/
https://en.wikipedia.org/wiki/Interoperability
https://en.wikipedia.org/wiki/Economies_of_scope
https://speakerdeck.com/rstropek/restful-web-api-design

Interface Technology

Tolerant against changes
See also Breaking Change in Microsoft’s REST API Guidelines

Technology-agnostic

Simple to use and provide
Availability of tools, libraries, frameworks, knowledge

Hide implementation details
Shared Database anti-pattern

https://github.com/Microsoft/api-guidelines/blob/master/Guidelines.md#123-definition-of-a-breaking-change
http://martinfowler.com/bliki/IntegrationDatabase.html

Interface Design

Synchronous communication
Request/response pattern

Bidirectional communication

Example: RESTful Web API, WebSockets

Asynchronous communication
Event-driven

Examples: Service Bus, RabbitMQ, Apache Kafka, Webhooks

Central orchestration or autonomy?
Example: Business Process Modelling and Execution

Further reading: https://www.nginx.com/blog/event-driven-data-management-microservices/

https://en.wikipedia.org/wiki/Request%E2%80%93response
https://developer.mozilla.org/en-US/docs/Web/API/WebSockets_API
https://en.wikipedia.org/wiki/Event-driven_architecture
https://azure.microsoft.com/en-us/services/service-bus/
http://www.rabbitmq.com/
http://kafka.apache.org/
https://en.wikipedia.org/wiki/Webhook
https://www.nginx.com/blog/event-driven-data-management-microservices/

Interface Mechanisms

Image Source: Chris Richardson, Microservices – From Design to Deployment, NGINX, 2016

Handling Failures

Partial failures
Single service must not kill entire system

Outage vs. degradation
Performance degradation

Single dependent service not available

Circuit breaker pattern
Track success of requests

Stop trying if error rate/performance exceeds threshold

Regular health check or retry

Versioning

Semantic Versioning (SemVer)

Raise awareness for breaking changes
Definition of a breaking change is necessary

Avoid breaking changes
Discussion point: JSON vs. XAML deserializer in C#

Offer multiple versions in parallel
Give consumers time to move

Use telemetry to identify slow movers

http://semver.org/

Libraries vs. Microservices

Goal: Don‘t Repeat Yourself (DRY)
Contraction to Microservices architecture?

Good for…
…cross-cutting concerns (use existing, wide-spread libraries)

…sharing code inside a service boundary

Client libraries
Hide complexity of communication protocol

Implement best practices (e.g. retry policy)

Example: Azure Active Directory Authentication Libraries

UI components
Service provides UI fragments (e.g. WebComponents)

https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://azure.microsoft.com/en-us/documentation/articles/active-directory-authentication-libraries/
http://webcomponents.org/

Automation
Continuous Integration and Deployment, Tests

Code Repository

Backlog

Build + Deploy

Monitor and improve

Automated Testing User Testing

Mobile app CI and CD

Image Source: Microsoft

CI/CD

One code repository and CI/CD build per service
Possible: Common infrastructure for economy of scope and scale

Build and deployment pipeline
Compile and fast tests (unit tests)

Slow tests

UAT (manual tests, explorative tests)

Performance testing (e.g. cloud load testing)

Separate deployment from release
E.g. Azure App Service stages with swapping

Canary releasing
Direct portion of your traffic against new release and monitor stability

Monitoring

System-wide view of our system‘s health
Contains data from all services

Logging

Telemetry (e.g. CPU and memory usage, response times, dependent requests, etc.)

Microsoft‘s solutions
Visual Studio Application Insights

Hockeyapp

3rd party solutions
Log analysis with Elastic Stack

Dynatrace (leader in Gartner Magic Quadrant)

https://azure.microsoft.com/de-de/services/application-insights/
https://hockeyapp.net/#s
https://www.elastic.co/products
https://www.dynatrace.com/

Manual Testing

Manual testing: try the program and see if it works!

Tester plays the role of a user
Checks to see if there is any unexpected or undesirable behavior

Test plans with specified test cases

Drawbacks
Slow

Requires lots of resources  expensive

Cannot be performed frequently

Heavy manual testing is a showstopper for Microservices

Testing Level

Unit Test
Test single function or class

Service Tests
Bypass UI and test service directly

Stubs or mockups for dependent services/resources (e.g. Mountbank)

End-to-End Tests
Hard in a Microservice environment (e.g. which versions to test?)

Tend to be flaky and brittle

Good approach: Test a few customer-driven “journeys”

http://www.mbtest.org/

Deployment

Deployment Strategies

Single service instance per host
Inefficient

Multiple service instances per host
Efficient in terms of resource usage

No isolation  no resource limitation, no isolated environments, no sandboxes

Service instance per VM
Based on a common image

Complete isolation

Uses resources less efficient  expensive

Requires mature virtualization environment

Deployment Strategies

Service instance per container
Based on a common image (automatically created)

High level of isolation (like VMs if you use e.g. Windows Hyper-V Container)

Requires running container environment (e.g. Docker Cloud, Azure Container Services)

Serverless deployments
E.g. Azure App Service, Azure Functions

Reduce operations to a minimum

https://msdn.microsoft.com/en-us/virtualization/windowscontainers/management/hyperv_container
https://www.docker.com/products/docker-cloud
https://azure.microsoft.com/en-us/services/container-service/
https://azure.microsoft.com/en-us/services/functions/

Service Discovery

Dynamically assigned

addresses

Changing environment
Failures

Scaling

New versions

Tools
DNS (e.g. Azure DNS)

Load Balancer (e.g. Azure LB)

Discovery and config tools (e.g.

Consul)

Image Source: Chris Richardson, Microservices – From Design

to Deployment, NGINX, 2016

https://azure.microsoft.com/en-us/services/dns/
https://azure.microsoft.com/en-us/documentation/articles/load-balancer-overview/
https://www.consul.io/

Client vs. server-side discovery

Image Source: Chris Richardson, Microservices – From Design to Deployment, NGINX, 2016

Deployment

Architecture
Old: Each node contains entire

system

New: Unrelated modules behind

load balancer/reverse proxy

API Gateways
Marshal backend calls

Aggregate content

Example: Azure API Management

Source: How we ended up with microservices

https://azure.microsoft.com/en-us/services/api-management/
http://philcalcado.com/2015/09/08/how_we_ended_up_with_microservices.html

Data Management

Data Management

Each Microservice has its own data
No transactions

No distributed queries

Duplicated data to a certain extent

Event-driven architecture
Requires service bus or message broker (e.g. Service Bus, RabbitMQ, Apache Kafka)

Option: Use DB transaction log

Event sourcing and CQRS
Read more in MSDN, Martin Fowler

https://azure.microsoft.com/en-us/services/service-bus/
http://www.rabbitmq.com/
http://kafka.apache.org/
https://msdn.microsoft.com/en-us/library/jj591559.aspx
http://martinfowler.com/bliki/CQRS.html

Transactions

Question and avoid ACID transactions across services
Perfectly fine inside service boundaries

Has consequences on API design (e.g. Azure Storage Entity Group Transactions)

Idempotent retry
Gather data, try again later

Use compensating transactions

https://en.wikipedia.org/wiki/ACID
https://msdn.microsoft.com/en-us/library/azure/dd894038.aspx
https://en.wikipedia.org/wiki/Compensating_transaction

Further Readings

Further Readings

Martin Fowler on Microservices

Newman, Sam. Building Microservices, O'Reilly Media

NGINX
Tech Blog

Microservices: From Design to Deployment

http://martinfowler.com/articles/microservices.html
http://amzn.to/2dswq3X
https://www.nginx.com/category/tech/
https://www.nginx.com/blog/microservices-from-design-to-deployment-ebook-nginx/

Saves the day.

Workshop

Q&A

Rainer Stropek
software architects gmbh

rainer@timecockpit.com

http://www.timecockpit.com

@rstropek

Thank your for coming!

Mail

Web

Twitter

